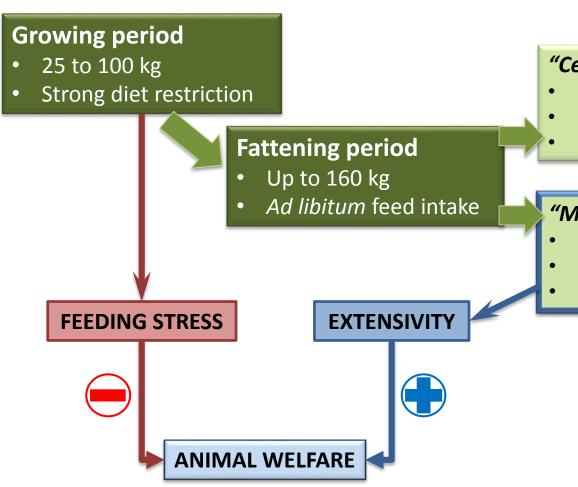


WP2. Task 2.3. Local feeding resources rich in agro-by products in the diets for local pig breeds

BACKFAT FATTY ACID PROFILE AFTER GROWING PERIOD IN IBERIAN PIGS FED WITH OLIVE CAKE IN A DRY OR WET (SILAGE) FORM

Adrián López-García¹, Juan M. García-Casco¹, María Muñoz¹, José M. Martínez-Torres², Miguel Á. Fernández-Barroso¹, Elena González-Sánchez²


 ¹ Centro de I+D en Cerdo Ibérico, Dpto. Mejora Genética Animal, INIA, 06300 Zafra (Badajoz).
 ² Escuela de Ingenierías Agrarias. Instituto Universitario de Investigación de Recursos Agrícolas (INURA), Universidad de Extremadura.

BACKGROUND

IBERIAN PIG HANDLING

"Cebo" / "Cebo de campo"

- Fodder-based feeding
- Intensive/semi-extensive systems
- Slaughter at 10/12 months

"Montanera"

- Acorn and grass-based feeding
- Semi-extensive system
- Slaughter at 14-16 months

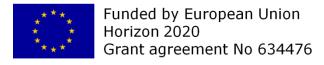
OLIVE-BY PRODUCTS

Benefits as components for feed in growing or finishing periods

Ad-libitum availability

No overweight risk No feeding stress due (low energy products) to restriction

With feeding restriction


Higher fiber supply (high-fiber products)

Use of local alternative resources

Positive effect on animal welfare

Effect on final product quality?

BACKGROUND

TREASURE

Fatty Acid Profile

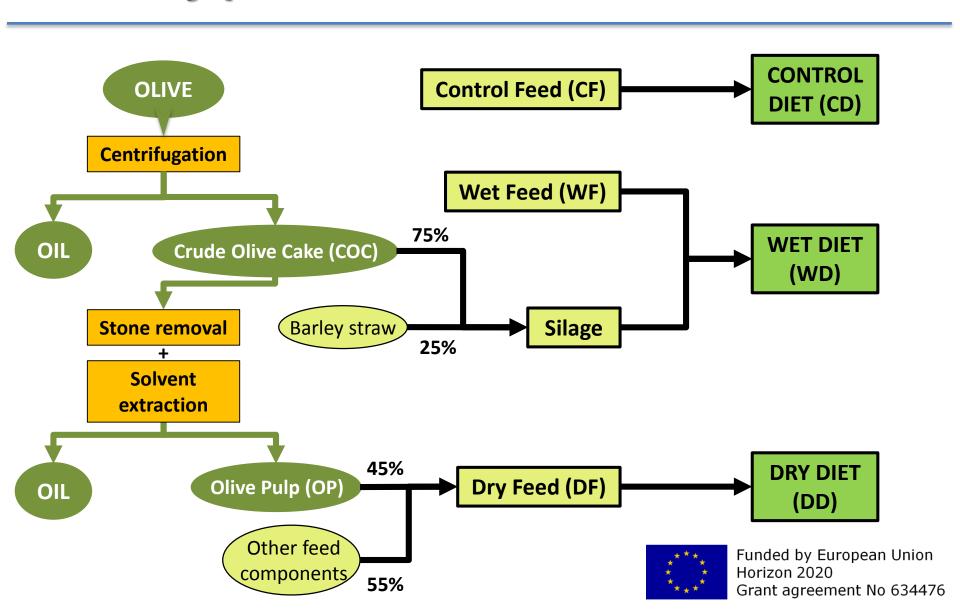
Iberian pig products market value may depend on major fatty acid proportions in carcass subcutaneous external fat.

	% Palmitic	% Stearic	% Oleic	% Linoleic	Source
	C16:0	C18:0	C18:1 n-9	C18:2 n-6	
Limits*	≤ 22,0	≤ 10,5	≥ 53,0	≤ 10,5	BOE, APA/3653/2007, dec 13th
	≤ 21,0	≤ 9,5	≥ 54,0	≤ 9,5	De Pedro, 2001; Daza et al., 2005

^{*} Approximate values. May change by year/source.

- Related to meat quality properties.
- Useful as indicator of pig diet during fattening period.
- Affected by:
- Rearing system

- Crossbreeding
- Diet composition
- Tissue type
- α-tocopherol on diet
- (turnover rate of tissue)


OBJECTIVES

Study of the influence of olive by-products as part of the growing diet of Iberian pigs in Fatty Acid profile of subcutaneous fat after the growing period.

M&M: By-products and diets

M&M: Animals and sampling

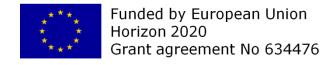
45 Iberian pigs

Start of experiment: at 6.5 months, 42 kg

- Duration: 191 days

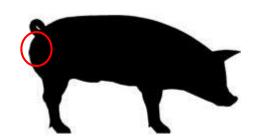
- 3 groups: Growing diets CD, DD, WD.

Each group in 110 m² pen.
 Outdoor & covered areas.


Diet	n	Feed	Form	Intake
CD 15 Control Fe		Control Feed	Pellets	Restricted
DD 15		Dry Feed (OP)	Pellets	Restricted
WD	15	Wet Feed	Pellets	Restricted
		COC by-product	Silage	Ad libitum

Fattening: Start at 12 months, 100 kg

- Montanera (ad libitum intake of acorns & grass).
- Animal groups re-adjusted according to extension and acorns & grass availability of each *dehesa*.
- 3 batches according to body weight.


M&M: Animals and sampling

Data & Sampling:

Backfat biopsies:

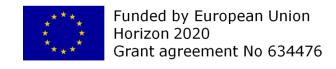
- Collected from rear part of body (Spanish Policy for Animal Protection (RD1201/05)).
- End of growing period.
- Fat homogenised with chloroform.

Fatty Acid profile:

- Gas chromatography after acid transesterification in presence of sulfuric acid (Cava et al., 1997).
- 14 FA analysed.

Statistics:

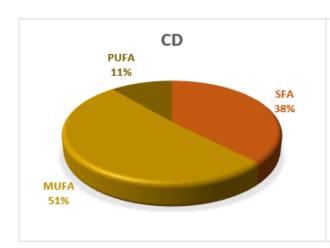
- ANOVA. Linear model: **y = Xb + e b = growing diet** (3-levelled factor)
Software: R (*Im*, anova, TukeyHSD)

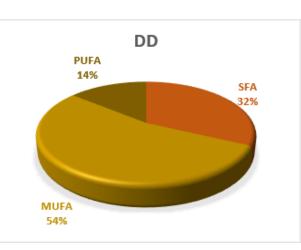

RESULTS

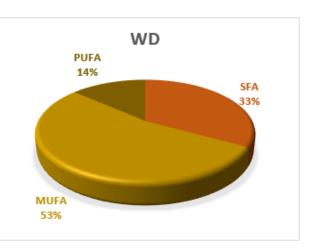
	FATTY ACIDS	CD (%)	DD (%)	WD (%)	SEM	ANOVA: p
	C14:0	1.40 ^a	1.14 ^c 棏	1.27 ^b 🗸	0.15	1.90x10 ⁻⁰⁶
¬	C16:0	24.30 ^a	21.54 ^b 👎	20.87 b 🦊	1.90	1.35x10 ⁻⁰⁹
	C16:1 (n-7)	2.67 ^a	2.36 b 棏	2.29 b 棏	0.25	1.76x10 ⁻⁰⁵
	C17:0	0.41 ^b	0.50 ^a 🗘	0.42 ^b	0.08	4.21x10 ⁻⁰⁴
	C17:1	0.42	0.41	0.39	0.05	0.476
¬	C18:0	11.40 ^a	8.62 ^c 👎	10.32 b 🗸	1.47	2.68x10 ⁻⁰⁸
¬	C18:1 (n-9)	46.69 ^b	49.83 ^a ☆	49.22 ^a 企	2.12	2.24x10 ⁻⁰⁵
¬	C18:2 (n-6)	9.44 ^b	12.20° 🗘	11.38 a 🗘	1.48	3.27x10 ⁻⁰⁹
	C18:3 (n-3)	0.70 ^b	0.87 ^a 1	0.91 a 🗘	0.13	1.71x10 ⁻⁰⁶
	C20:0	0.23	0.22	0.22	0.03	0.400
	C20:1	1.36 ^b	1.31 ^b	1.51 a ☆	0.14	1.37x10 ⁻⁰⁵
	C20:2	0.63 ^b	0.65 ^b	0.75 ^a 🗘	0.08	2.28x10 ⁻⁰⁵
	C20:3	0.18 ^b	0.16 ^c	0.25 ^a 👍	0.04	2.64x10 ⁻¹²
	C20:4 (n-6)	0.18	0.19	0.19	0.03	0.577

SFA

MUFA


PUFA





FATTY ACID TOTALS	CD (%)	DD (%)	WD (%)	SEM	ANOVA: p
SFA	37.75 ^a	32.03 ^b 棏	33.10 ^b 棏	3.12	8.54x10 ⁻¹⁰
MUFA	51.13 ^b	53.90° 🚹	53.42 ^a	2.06	1.93x10 ⁻⁴
PUFA	11.12 ^b	14.07 ^a	13.49 ^a ☆	1.64	5.53x10 ⁻⁰⁹

REMARKS

- Incorporation of olive-based diets during growing period has a positive effect on fatty acid profile at the end of this period, diminishing SFA percentage.
- Olive-based ad-libitum diets (silage addition, WD treatment) can be a good alternative to avoid restriction during growth, without spoiling fatty acid composition.
- More analyses are being carried out to observe the possible effect of these diets on fatty acid profile after montanera period.
- Also, the effect of these diets in meat quality traits is being studied.

11th International Symposium Contemporary Trends in Livestock 11 - 13 October 2017, Belgrade, Serbia

